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ABSTRACT 

The long-term success of an implant depends on the stability of bone support around an osseointegrated implant. The dental 

implant surfaces provide an ideal substrate for bacterial adhesion forming a biofilm. Biofilm performs vast functions ranging from 

physical defensive barrier against phagocytic predation to working as a selective permeable barrier. Once crestal bone loss starts, it 

can result in increased bacterial accumulation resulting in further peri-implant tissue destruction. These rapidly growing bacteria give 

rise to a chronic infection which is difficult to eradicate by conventional mechanical as well as antibiotic therapy. Biofilm matrix limits 

the diffusion of systemic antimicrobial agents that are capable of damaging the microbial complexes. Shortcomings of systemic 

antibiotics also include relatively low drug concentration at the target site and potential toxicity. Evidence based reviews show that 

surface modifications can significantly affect initial adhesion and biofilm formation on the implant surface. The various functional 

modifications on the implant surfaces which have been suggested include coatings on the titanium implant which are incorporated 

with disinfectants, antibiotics as well as antimicrobial peptides for which different methods of physical adsorption have been reported. 

The ultimate antimicrobial surface should be responsive to even the lowest bacterial load. Nano- related concepts are also an 

emerging area of research in controlled drug delivery through the use of nanostructures (nanotubes, nanospheres) as therapeutic 

surface modification of dental implants. Henceforth this review throws light on coated dental implants which exhibit therapeutic 

properties as a strategy to combat peri implant infections, thereby aid in bridging the gap between research and clinical implant 

dentistry. 
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INTRODUCTION 

Peri implant infections are a major destructive 
complication in implant dentistry and are closely related to the 
surface characteristics of commercially available pure titanium 
and its alloys and the rate of biofilm formation on the implant 
surface. Peri implant infections are a collective term for 
inflammation which affect both the surrounding hard and soft 
tissues of an osseointegrated implant which is in function 
(Isidor F, 1996). The implant surface is susceptible to infection 
for the two main reasons, (1) formation of a surface biofilm and 
(2) compromised immune response at the implant/tissue 
interface (Zhao L et al, 2009). Titanium is the ideal material of 
choice for hard tissue fixation devices mainly due to its 
corrosion resistance and favorable biocompatibility. The 
biocompatibility of titanium implant can be attributed to the 
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surface protein layer formed under physiological conditions. 
But this layer makes the surface suitable for bacterial 
colonization and biofilm formation leading to a compromised 
state (Hetrick EM et al, 2006). 

To overcome this limitation of biofilm formation on 
titanium surfaces researchers have developed anti-adhesive or 
bactericidal surface modifications. The most common strategy 
to overcome interaction between synthetic materials and 
microorganisms are to modify the implant surface with 
biofunctional molecules (functionalization of implant surface). 
The various functional modifications on the implant surfaces 
that has been researched include coatings on the titanium 
implant which are incorporated with disinfectants, antibiotics as 
well as antimicrobial peptides for which different methods of 
physical adsorption have been reported (Jasmin Grischke et al, 
2016). Prophylactic coatings with the local application should 
possess sufficient release rate to prevent the bacterial adhesion 
or kill bacteria adhered to the implant surfaces and enhance 
implant success (Antoci V Jr et al, 2008). The functionally 
modified surfaces may either exhibit (1) antimicrobial 
capacities which cause cell damage to adhering bacteria or (2) 
anti-adhesive properties that inhibit biofilm formation in the 
first place (Jasmin Grischke et al, 2016). Nano- related 
concepts are also an emerging area of research in controlled 
drug delivery through the use of nanostructures (nanotubes, 
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nanospheres) as therapeutic surface modification of dental 
implants (Eriberto Bressan et al, 2013; Li, Tao, et al, 2017).  

Henceforth this review throws light on coated dental 
implants which exhibit therapeutic properties as a strategy to 
combat peri implant infections, thereby aid in bridging the gap 
between research and clinical implant dentistry. 

Importance of Antibacterial Coatings: 
Biofilm is a microbial derived sessile colony 

characterized by cells that are irreversibly attached to the 
substrate or an interface to each other, embedded in a matrix of 
extracellular polymeric substances produced by the 
microorganisms and exhibiting an altered phenotype with 
respect to growth rate and gene transcription. (Donlan RM et 
al, 2002). The complex microbial communities are the major 
etiologic factors for caries, gingivitis, periodontitis and 
stomatitis. Also, in case of peri-implantitis it is a major cause of 
dental implant failure (Paquette DW et al, 2006). The 
composition of the biofilm and the rate at which biofilm 
formation occurs on the implant surface, along with the surface 
characteristics of the implant, abutment materials and the 
prosthetic components influence the rate of peri-implant tissue 
destruction. 

Studies have demonstrated that both the quality and 
quantity of plaque adhesion on the implant surface are 
important in the long-term survival of dental implants (Lindhe J 
et al, 1992). A ten-year implant survival rate of 90-96% has 
been recorded (Cecchinato D et al, 2014). 

The biofilm formed limits the diffusion of systemic 
antimicrobial agents that are capable of eliminating the 
microbial complexes. The shortcomings of systemic antibiotics 
also include relatively low drug concentration at the target site 
and potential toxicity. A recent systematic review concluded 
that within the limitations of the experimental conditions, 
surfaces smeared with organic or inorganic antimicrobial 

substances as well as AMP surfaces exhibit bactericidal activity. 
In addition, bioactive polymer coatings, nanoscale surfaces and 
UV-activatable surfaces have also shown to enhance the 
antimicrobial activity compared to uncoated titanium (Jasmin 
Grischke et al, 2016). 

Antimicrobial dental implant functionalization strategies: 
Prevention of bacterial colonization on implant surfaces 

play a pivotal role in limiting the spread of infections. There are 
three major functionalization strategies for designing 
antibacterial coatings include: antibacterial agent release, 
contact-killing, and anti-adhesion/bacteria-repelling. 

 Antibacterial agent release: These coatings exert their 
antibacterial activity by leaching loaded antibacterial 
agents over time leading to destruction of both adhered 
and adjacent planktonic bacteria. The incorporated 
antibacterial agents are released by diffusion of these 
agents into the aqueous medium, by erosion/degradation, 
or by hydrolysis of covalent bonds (Campoccia, D. et al, 
2013). However, their ultimate action can be considered as 
temporary only as these coatings have limited reservoirs of 
antibacterial agents. 
 

 Contact killing: Contact-killing coatings have been 
developed to bypass the reservoir exhaustion of release-
based materials (Tiller, J.C. et al, 2001). The antimicrobial 
agents are covalently anchored to the material surface by 
flexible, hydrophobic polymeric chains (Lewis, K et al, 
2005). The main mechanisms of action are based on 
membrane interactions, such as physical lysing or charge 
disruption and hence the most effective compounds as 
contact-killing coatings are either cationic compounds 
(QACs, chitosan, AMPs, etc.) or enzymes (Green, J-B.D. et al, 
2011). 
 

 

Fig. 1: Coated dental implants: an emerging therapeutic strategy 

 Anti-adhesion/bacteria repelling: Anti-adhesion coatings 
aim to prevent the initial step of biofilm formation using 
non-cytotoxic mechanisms. Treating protein-surfaces 

and/or protein-bacteria interactions may be a good 
strategy with a therapeutic potential for preventing 
bacterial adhesion to a specific biomaterial (Campoccia D 
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et al, 2013). Proteins such as albumin, fibronectin, 
fibrinogen, laminin, denatured collagens, and some 
plasma/tissue lipids are the first host substances that 
interact with the surface structure of the biomaterial 
(Wagner et al, 2011; Vadillo-Rodriguez et al, 2013). 
Friedman et al. using a rabbit model, demonstrated 
reduced bacterial adherence on pure titanium samples and 
decreased infection rates of implants coated with cross-
linked albumin (Friedman, R.J et al, 1997). Surface 
molecules that can resist protein adsorption, such as PEG 
and zwitterion, have been demonstrated to have great anti-
adhesion properties in vitro (Hasan, J. et al, 2013). 
 

 Multifunctional and smart coating: A smart surface is a 
completely different methodology designed to be a self- 
responsive multitask micro- machine that releases 
antimicrobial (and other) substances after stimulation by 
microbiological (or other) signals. The response depends 
on the specific abilities of the coatings acquired during the 
manufacturing process (Jiri Gallo et al, 2014). 

Antibiotic coated implants: 
The most effective strategy to battle periimplantitis 

would be the prevention of biofilm formation on the implant 
material. Antibiotic coated dental implant materials may either 
exhibit antibacterial capacities which cause cell damage to 
adhering bacteria or antiadhesive properties that inhibit initial 
bacterial adhesion (Zhao L et al, 2009). 

Bioactive coatings release antibiotics, such as 
gentamycin (inhibit protein synthesis by binding to the bacterial 
30s ribosome), vancomycin (disrupt cell wall peptidoglycan 
synthesis by binding to amino acids), and amoxicillin (inhibit 
cell wall synthesis by enzyme inhibition) but require a 
vehicle/vector which carries the agent to the desired site. 
Calcium phosphates, which are known to be biocompatible and 
osteoconductive, have been widely used as potential vectors. 
But antibiotics cannot be incorporated during its formation 
because of high processing temperature. Zhao et al in a review 
concluded that antibiotic-loaded hydroxyapatite (HA) coatings 
on titanium favors prevention of biofilm formation compared 
with standard HA coatings (Zhao L et al, 2009). Various 
methods for physical adsorption have been reported and they 
include: (a) Loading by dipping method which leads to burst 
release of antibiotics; (b) application of a lipid layer which acts 
to serve as a hydrophobic barrier and can retard the drug 
release; (c) biomimetic method by immersion into a 
supersaturated solution of calcium phosphate; (d) controlled 
release of antibiotics by biodegradable polymers and sol-gel 
coatings; and (e) electrospray deposition of amoxicillin 
combined with poly(lactic-co-glycolic acid) (PLGA) (Varun 
Yarramaneni et al, 2016). 

A biodegradable gentamicin-loaded Poly D, L, Lactic 
acid coating has been developed to prevent implant-related 
osteomyelitis in rats (Lucke M et al, 2003). 

Vancomycin covalently bonded to titanium using solid-
state synthesis preserves the activity of the antibiotic. It is a 
preferred antibiotic for protection against both bacterial 
adhesion and biofilm formation by S. epidermidis. Titanium 
surface tethered with vancomycin is biocidal to the bacterial cell 
wall (Antoci V Jr et al, 2008). 

Cometa S in 2012 in a study stated that a possible 
solution to prevent the initial bacterial adhesion may be coating 

of the implant surface with a thin layer of antibiotic-loaded 
biocompatible polymer. Antibiotic-modified poly (ethylene-
glycol diacrylate) hydrogel coatings on titanium substrates 
(vancomycin and ceftriaxone) were prepared by 
electrochemical polymerization and tested against methicillin 
resistant Staphylococcus aureus (ATCC 33591). The study 
reported that these coatings displayed an interesting 
antibacterial activity, but further studies on their cytotoxicity is 
required to prove their real clinical efficacy (Cometa S et al, 
2012). 

Hongbin Lv et al, 2014 observed that loading 
minocycline on the surface of implants based on layer by layer 
(LbL) selfassembly strategy could furnish implants with 
sustained antibacterial property. This can inhibit the immediate 
colonization of bacteria onto the surface of implants and reduce 
the occurrence of periimplantitis (Hongbin Lv et al, 2014). Yet 
another study by He S et al, 2014 used Ti substrate coated by 
the antibiotic cefotaxime sodium (CS) onto a polydopamine-
coated Ti through catechol chemistry. The results of his study 
demonstrated that the antibiotic-grafted Ti substrate showed 
good biocompatibility and well-behaved hemocompatibility. In 
addition, the antibiotic-grafted Ti could effectively prevent 
adhesion and proliferation of Escherichia coli (Gram-negative) 
and Streptococcus mutans (Gram-positive) (He S et al, 2014). 

Fibers containing TCH at 5 wt.% demonstrated 
complete inhibition of Aa biofilm. Even though a marked 
reduction in CFU/mL was observed with an increase in TCH 
concentration, Pi proved to be the most resilient 
microorganism. SEM images revealed the absence of or a 
notable decrease in bacterial biofilm on the TCH-containing 
nanofibers. The results of the study suggest that tetracycline-
containing fibers hold great potential as an antibacterial dental 
implant coating (RG Shahi et al, 2017). 

Nonantibiotic coated implants: 
1. Organic antimicrobial agents: 

The emerging risk of antibiotic resistance has 
provoked researchers to use non-antibiotic agents as 
antimicrobial agents. Certain of these substances has made its 
use applicable in daily life due to their broad antimicrobial 
activity. However, several reports have pointed out that the 
nonantibiotic organic antimicrobial agents may cause cell 
damage (Harris LG et al, 2006; 78:50–58; Schutze N et al, 
2007). 

1.1. Chlorhexidine: 
Regarding the risk of antibiotic resistance associated 

with the application of antibiotics-containing coatings, 
nonantibiotic organic antimicrobial agents such as 
chlorhexidine, chloroxylenol, and poly (hexamethylene 
biguanide) may be better alternatives (Morra M et al, 2004; 
Kim W-H et al, 2008). Their broad-spectrum antimicrobial 
action and lower risk of drug resistance has made its use 
applicable in daily life, especially chlorhexidine which is well 
known for its extensive application in the treatment of 
periodontal infection. (Heasman PA et al, 2001). 

Studies have shown that chlorhexidine can adsorb to 
the TiO2 layer on the titanium surface and desorb gradually 
over a period of several days [Kozlovsky A et al, 2006; Barbour 
ME et al, 2007). 

Natalie J et al in 2015 investigated the use of 
chlorhexidine (CHX) hexametaphosphate (HMP) nanoparticles 
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(NPs) with a total CHX concentration equivalent to 5 mM as a 
coating for dental implants.  CHX HMP NP-coated surfaces 
exhibited antimicrobial activity against oral primary colonising 
bacterium Streptococcus gordonii within 8 h. The antimicrobial 
efficacy was greater in the presence of an acquired pellicle 
which is postulated to be due to retention of soluble CHX by the 
pellicle (Wood et al, 2015). 

1.2. Antimicrobial peptides: 
Antimicrobial peptides (AMPs) are established 

antimicrobials due to their broad-spectrum activity against 
bacteria, fungi and virus, low host cytotoxicity, and low bacterial 
resistance (Chen, X et al, 2013). These AMPs which are derived 
from human proteins cause membrane lysis either by barrel 
stave, toroidal pore, or carpet mechanisms (Nguyen LT et al, 
2011). GL13K is a small cationic AMP, i.e., derived from human 
salivary protein, parotid secretory protein (HPSP). Balhara et al 
in 2013 and Chen et al in 2014 found that GL13K has strong 
anti-inflammatory and antibacterial activities against both 
Gram-negative and biofilm-forming bacteria particularly 
effective against Pseudomonas aerogenosa. These AMPs cause 
membrane lysis by any of the proposed mechanisms of action. 

GL13K peptide apart from bactericidal effect has 
additional resistance through hydrolytic and mechanical 
changes with no significant release of peptides from the 
titanium surface. It was found that GL13K is cytocompatible 
with osteoblasts and human gingival fibroblasts (Holmberg KV 
et al, 2013). Recombinant human beta defensin-2 (HBD-2) was 
used to study the influence on the proliferation and survival of 
cells in culture. They concluded that HBD-2 is not only 
biocompatible but also promotes proliferation of hMSCs, 
osteoblasts, and keratinocytes in culture (Warnke PH et al, 
2013). 

Jue Shi et al in 2015 in their study used antimicrobial 
peptide coatings on smooth titanium surfaces which were 
assembled using a LBL technique. In this study, the broad-
spectrum AMP, Tet213, was linked to collagen IV through sulfo-
SMPB and has been renamed as AMPCol. This technique which 
allowed the controlled release of AMP decreased the growth of 
both a Gram-positive aerobe (Staphylococcus aureus) and a 
Gram-negative anaerobe (Porphyromonas gingivalis) up to one 
month. Early S. aureus biofilm formation was also inhibited by 
the coating (Shi, Jue & Liu, 2015).  

1.3. Essential oils: 
Warnke et al in 2009 investigated the antimicrobial 

effectiveness of different essential oils on several pathogenic 
microorganisms with microbiological tests. The tested essential 
oils (lemongrass oil, tea tree oil) exhibited clear antimicrobial 
effects against staphylococci, streptococci and candida (P.H. 
Warnke et al, 2009). Functionalization of different dental 
implant material surfaces with essential oils resulted in 
immediate and ongoing antibacterial and antiplaque activities 
(Bazaka K et al, 2011). Yet another study by Afya Sahib et al in 
2013 evaluated the effectiveness of essential oils (cinnamon oil 
and clove oil) on implant surfaces and they were shown to be 
effective in inhibiting biofilm formation. They were shown to be 
more effective against gram negative anaerobic bacteria than 
against facultative anaerobic gram-positive bacteria (Al-Radha 
et al, 2013). 

1.4. Bioactive Antibodies: 
Antibodies or immunoglobulins have an intrinsic 

capacity of opsonization. They opsonize microbes and 

phagocyte them, thereby reducing their virulence. It is a natural 
immune function of the body which can be critically exploited at 
the implant and wound sites. These antibodies operate 
independently of antibiotic resistance mechanisms. The most 
significant antibody subtype is immunoglobulin G (IgG). The 
release of commercially pooled human polyclonal IgG from 
hydrophilic polyurethane (PU) hydrogel has shown validated 
results against the clinical strain of E. coli (Rojas IA et al, 2000). 

2. Inorganic antimicrobial agents: 
2.1. Hydroxyapatite: 

Inorganic antimicrobial agents are very attractive 
alternatives from the perspective of doping of biomaterials 
because they possess many advantages such as good 
antibacterial ability, excellent biocompatibility, and satisfactory 
stability. It has been observed that a thin layer of HA coatings on 
titanium (Ti) implant surface can be deposited by a mechanism 
known as “magnetron sputtering.” Kulkarni et al, 2017 
demonstrated that calcium phosphate coatings have excellent in 
vitro bioactivity. These coatings can enhance osseointegration 
and prevent infection in implants, thereby improving the 
success rates of implants (Kulkarni Aranya et al, 2017). These 
coatings have also been used as potential vectors along with 
antibiotics (Zhao L et al, 2009). 

2.2. Silver particles: 
Silver (Ag) has also been used to coat Ti implants for 

antibacterial applications. It has a broad, long-lasting spectrum 
of activity against both Gram-positive and Gram-negative 
bacteria. Silver coating can remarkably prevent bacterial 
adhesion and growth without jeopardizing the activity of 
osteoblastic and epithelial cells (Ewald A et al, 2006; Chen W et 
al, 2006). The basic mechanism of action of Ag+ ions is that it 
causes DNA condensation on interaction with bacterial cell wall 
and disturb its permeability (Campoccia, D et al, 2013). 

Silver can be introduced by various techniques, such as 
magnetron sputtering, plasma immersion ion implantation 
(PIII), pulsed filtered cathodic vacuum arc deposition and 
physical vapour deposition (PVD) (Chen W et al, 2006). Taking 
into consideration these advantages as a bactericide, silver has 
also been introduced into titanium to enhance the bactericidal 
ability. It is believed that anodization of Ag can yield extra 
antibacterial activity which is of special interest for dental 
implants (Zhao L et al, 2009; (Pokrowiecki R et al, 2017). 

2.3. Anodically oxidized/ ion implanted surfaces: 
Certain elements such as fluorine (F), zinc, (Zn) 

calcium, (Ca), chlorine (Cl), iodine (I), copper (Cu), cerium (Ce) 
or selenium (Se) may be incorporated into titanium or 
hydroxyapatite coatings by anodic oxidation of their 
corresponding metal ions. The bactericidal activity depends on 
the slow release of ions from the implant surface into the 
surroundings. One mechanism of bacteriostasis is hydroxlyation 
into highly reactive components, such as HCl, HOCl, TiOH, 
hydrogen peroxide (H2O2) or superoxide (O2−). These reactive 
species evoke oxidation of the bacterial cell membranes, 
resulting in increased cell permeability and ultimately results in 
cell death. Also, an additional bactericidal mechanism of ion 
implant surface is mainly by inhibition of bacterial cell 
metabolism (Rodríguez-Valencia C et al, 2013; Jin G et al, 
2014). 

Chemical modification of anodically oxidized titanium 
by incorporation of ions reduces growth of biofilm in models of 
E. coli, P. gingivalis, S. mutans, S. aureus and A. 
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actinomycetemcomitans (Lin DJ et al, 2013; Fang J et al, 2014; 
Cheng H et al, 2015). Ge X et al reported that bacterial counts 
on ion implanted surfaces were found to be reduced by 55–80% 
compared to pure titanium (Ge X et al, 2010). 

Anodically oxidized and ion-implanted surfaces reduce 
bacterial adhesion and may be beneficial in balancing the 
cytoactivity of osteoblast cells and bacteriostasis. When 
measured at 3- or 10-day intervals, Li J et al in a study 
concluded that ion-implanted surfaces exhibit enhanced dose-
dependent in vitro antibacterial activity compared to uncoated 
titanium and TiO2, as well as enhanced adhesion, proliferation 
and differentiation of rat bone marrow stem cells and mouse 
fibroblasts (Li J et al, 2012; Zhang W et al, 2012). In vivo 
animal studies with ion implanted surfaces found reduced rates 
of infection and inflammation in tissues surrounding the 
implant, as well as an excellent osteoconductive response 
(Schröder K et al, 2010; Shirai T et al, 2011). 

2.4. Bioactive polymers: 
Certain bioactive molecules such as chitosan (Singla 

AK et al, 2001) and hyaluronic acid (Chua PH et al, 2008) 
possess the ability to inhibit bacterial adhesion and/or kill them. 
Chitosan, with a chemical structure similar to hyaluronic acid, is 
obtained from deacetylation of chitin and is found in the 
exoskeletons of insects and marine invertebrates and the cell 
walls of certain fungi. Chitosan leads to differentiation of 
osteoprogenitor cells and improves the attachment, growth, 
viability, alkaline phosphatase (ALP) activity, and phenotypic 
expression of the osteoblast cells (Cai K et al, 2001; 
Bumgardner JD et al, 2003). 

Chitosan is noted for various biological properties 
including biocompatibility, biodegradability into harmless 
products and nontoxicity (Kim IY et al, 2008). Additionally, 
chitosan has a broad antibacterial spectrum of activity and 
hence, it has wide applications in bone substitutes, wound 
dressing, tissue engineering scaffolds for different tissues, and 
as potential carriers for various active agents. Chitosan has been 
bonded to titanium surfaces by a layer of certain linking 
molecules such as 3-aminopropyltriethoxysilane and 
triethoxsilylbutyraldehyde. (Martin HJ et al, 2007; Walters KB 
et al, 2008). 

F.Z.Bougueraa et al in 2014 concluded an 
improvement in  the interaction of the implant with the 
biological environment and to better protect against all 
infections around the implants (F.Z.Bougueraa et al, 2014). 
Kalyoncuoglu et al in 2015 in a study proposed that the chitosan 
coating allowed the adhesion and proliferation of human 
gingival fibroblast cells and it showed a high level of 
cytocompatibility while preventing the growth of the P. 
gingivalis bacteria (Ulku Tugba Kalyoncuoglu et al, 2015). 

2.5. UV activable surfaces: 
Ultraviolet A (UVA) light is electromagnetic radiation 

with a wavelength between 315 and 380 nm that interacts with 
organic molecules thereby causing chemical reactions and 
biological effects. The photo-functionalization of titanium 
dioxide (TiO2) following activation with UV light removes 
hydrocarbon contamination and results in a super-hydrophilic 
surface, which in turn decomposes adsorbed organic impurities 
by the process of oxidation. A secondary oxidation which is 
initiated by the reactive oxygen species (ROS) seems to be the 
necessary step to achieve antimicrobial activity as these active 
oxygen species can destroy the outer membrane of bacterial 

cells (Shibata Y et al, 2010). ROS are chemically reactive 
molecules containing oxygen, such as superoxide or hydrogen 
peroxide. 

In an in vitro study under static and dynamic 
conditions, UVA illumination prior to bacterial colonization 
induced a reduction in adhesion rates and a significant decrease 
in the adhesion strength of S. epidermidis and S. aureus, without 
altering biocompatibility (Gallardo-Moreno et al, 2009). In a 
multispecies study authors found a positive effect on the 
attachment and biofilm formation of complex oral microbial 
communities to UV treated titanium (de Avila ED et al, 2015). 

2.6. Nitride coatings: 
Titanium nitride (TiN) is a material used to improve 

the surface properties and esthetics of metal tools. It has been 
documented that TiN has excellent chemical stability, is 
biocompatible and is resistant to high temperatures and to 
corrosion and has low friction. These reduced surface 
interaction characteristics may be one reason for the 
antimicrobial effect of TiN, thus the overall antibacterial effect 
of nitride surfaces is a matter of discussion. 

Studies on nitride surfaces are sparse and the results 
are controversial. Some authors found unaltered or increased 
bacterial adhesion on nitride titanium surfaces (Lai CH et al, 
2011; Chang YC et al, 2013), but others found reduced biofilm 
formation (Lin N et al, 2012; Zhang X et al, 2012). Ji et al, 2015 
found TiN to show antimicrobial effects against S. mutans but 
not against P. gingivalis (Ji MK et al, 2015). 

Nanostructured Surfaces and Coatings: 
Nanoparticles are defined as clusters of atoms of size 

ranging from 1–100 nm, with a very large surface area to 
volume ratio (Taylor E et al, 2013). Several studies have 
demonstrated that nanoparticles in conjunction with other 
surface treatment could inhibit bacterial adhesion (Antoci, V et 
al, 2007; Mitik-Dineva et al, 2008; Wang, D.J et al, 2013). Yet 
another study used fabrication of polymers containing 
antibacterial nanoparticles and substances which inhibited both 
quiescent and sessile bacteria (Wang H et al, 2013). Synthetic 
polymers, natural polymers, and their derivatives (e.g., gelatin, 
chitosan) have potential to be used as implant surface scaffolds 
and delivery vehicles of antibacterial agents (Zan, X et al, 2010; 
Lischer S et al, 2011). 

Copper, zinc, magnesium and especially silver and gold 
NPs display antimicrobial activity7) and are therefore possible 
candidate molecules for antimicrobial implant surface 
modifications (Vishwakarma, V et al, 2009; Webster, T.J, 
2012).  Silver cations permanently disrupt bacterial cell wall, 
inactivate essential proteins, cause DNA condensation, and lead 
to reacting oxygen species generation (Knetsch, M.L.W et al, 
2011; Rizzello L et al, 2013). The antibacterial activity of the 
silver NPs is dependent on both size and shape. In vitro and in 
vivo experiments have shown long-lasting antibacterial 
protective effects of nanostructured titanium coating 
incorporated with silver NPs (Cheng, H et al, 2013; Kose N et 
al, 2013). Tantalum alloys are known to have excellent 
biocompatibility when used as a protective coating. It has been 
reported that Ag-doped TaN and Cu-doped TaN with 
nanoparticles can decrease the multiplication of E. coli bacteria. 
A twin-gun magnetron sputtering system is used for deposition 
of TaN-Ag coatings. TaN and TaN-Ag coated Ti possessed higher 
optical density value and showed better Human Gingival 
Fibroblasts (HGF) cell viability and proliferation than the 
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uncoated sample (Huang H-L et al, 2010). Initial clinical 
experiences with these “custom made” implants are promising 
(Hardes J et al, 2010; Hussmann, B et al, 2013). 

Recent developments: 
To tackle the problem of the dawning multidrug 

resistance, viable alternatives to biocidal antibacterial agents 
are being widely investigated. 

Teixobactin: are likely to completely avoid the development of 
resistance. This was achieved by targeting less-mutable 
components of the bacteria (lipid precursors of cell wall 
components) rather than relatively mutable proteins (Ling, L.L. 
et al, 2015). 

Quorum sensing inhibitors: Bacteria secrete and detect 
signaling molecules (autoinducers), enabling cell to cell 
communication (quorum-sensing, QS) and the regulation of 
several bacterial processes, including gene expression, virulence 
factor production, and biofilm formation. Consequently, 
molecules that target and disrupt QS have garnered increasing 
interest as releasable antibacterial agents. Gram-positive 
bacteria typically use peptides for intercellular communication, 
while this role is fulfilled by acylhomoserine lactones (AHL) in 
Gram-negative bacteria (Sintim, H.O. et al, 2010). Various 
approaches are being investigated to inhibit this communication 
to control the diseases caused by bacteria. Evidence shows that 
these inhibitors act by interfering with the corresponding signal 
binding to the receptor (Gholson J. Lyon et al, 2000), or by 
decreasing the receptor concentration Eg: Halogenated 
furanones (Manefield M et al, 2002). The other group of small 
chemicals is the enzyme inhibitors. For example, triclosan 
inhibits enoyl-ACP reductase whose product is the essential 
intermediate in AHL biosynthesis, and closantel is a potent 
inhibitor of histidine kinase sensor of the two-component 
system (Mounika Basavaraju et al, 2016). By inducing less 
evolutionary stress on bacteria than biocidal compounds, QS 
inhibitors are less likely to induce the development of 
resistance.  

c-di-GMP: Another key target for bacterial signaling disruption 
is a small messenger molecule, bis-(30-50)-cyclic dimeric 
guanosine monophosphate (c-di-GMP), known as a central 
regulator of biofilm formation and dispersal in a wide variety of 
bacteria by controlling the switch between motile planktonic 
and sedentary, biofilm-forming phenotypes (Chua, S.L. et al, 
2014). Tazin Fahmi et al suggested that due to its existence in 
diverse microorganisms, its involvement in crucial cellular 
activities, and its stimulating activity in host immune responses, 
c-di-AMP signaling pathway has become an attractive 
antimicrobial drug target (Fahmi T et al, 2017). Therefore, 
altering the intracellular c-di-GMP concentrations, either 
through c-di-GMP analogs or inhibitors, could emerge as a new 
pathway to reduce biofilm formation and biofilm-related 
infections. 

Future perspectives: 
Implant supported biosensors: The realization of a new 
biosensing platform technique may have a significant influence 
on current medical diagnosis and therapy, especially for chronic 
diseases. Yu-Jung Li and Chih-Cheng Lu in 2015 in their study 
proposed this new method of biological sensing to realize a non-
invasive blood monitoring way in a painless manner without 
injections. (Yu-Jung Li et al, 2015). Such advances in medical 
science has dawned to a new era of diagnostic research in 
dentistry. 

Digital drug delivery: An ultrasound (US)-responsive system 
was previously developed for an on-demand delivery of insulin, 
ciprofloxacin or other agents (Kwok CS et al, 2000; Kwok CS et 
al, 2015). In this system, a drug-containing polymeric monolith, 
poly (2-hydroxyethyl methacrylate) [pHEMA], was coated with 
a self-assembled multilayer (SAM) coating of long methylene 
chains. Conceptually, the resulting coating restricted the drug 
molecules to within the matrix in the absence of US and 
permitted the release of drugs with exposure to US. This system 
can be potentially used on or within long-term implants or 
biomaterials that might develop device-centered infections or 
biofilms after varying periods of implantation. Norris et al. 
demonstrated that this system can significantly reduce the 
accumulation of Pseudomonas aeruginosa biofilms in flow cell 
studies using a low intensity US source (Norris P et al, 2005). 
Exposure of this drug delivery system to US at periodic intervals 
could replace current antibiotic regimens of oral or systemic 
antibiotics for at least a two-week period (Schuck. EL et al, 
2005). Thus, this on-demand system has the potential for 
delivering antibiotics locally at the site of infection. 

CONCLUSION 

The impact of biofilm associated infections and the 
unreliable efficacy of conventional peri-implantitis therapy have 
encouraged researchers to find new preventive strategies to 
combat implant-related infections. Numerous antimicrobial 
biomaterials have been reported in the scientific literature and 
this number is increasing rapidly. These “custom made” 
therapeutic implants have shown promising results in vitro and 
in animal studies. The application of coating technology to 
dental implants can be used to facilitate insertion, improve 
biocompatibility, extend lifetime, and reduce implant-related 
problems that can lead to failure and other serious 
complications for the recipient. The lack of in vivo human 
studies, have limited our discussions to only to theoretically 
transfer our findings in to clinical reality. 
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